Математика 5-6 классы. 23. Равенство дробей. Основное свойство дроби. Сокращение дробей

 


 

 

Равенство дробей

 



Для любой дроби можно указать сколько угодно ей равных дробей.



Например, или

Это можно объяснить так: если отрезок разделить пополам, а половину также пополам, то ясно, что половина отрезка равна двум его четвертям, т. е. Также  можно показать, что половина равна трем шестым и т. д. (рис. 4.4).



Можно еще сказать, что дроби и определяют одно и то же число; записанное в разных формах. Дроби и так же определяют одно и то же число, записанное в разных формах, и т. д.

Если числитель и знаменатель дроби умножить на одно и то же натуральное число, то получится дробь, равная данной, т. е. выполняется равенство


Это свойство называют основным, свойством дроби. С его помощью можно получать дроби, равные данной дроби.

Например,

Равенство (1) можно записать и в обратном порядке:

В таком виде левая часть равенства есть дробь числитель и знаменатель которой имеют общий множитель n.

Если n > 1, то говорят, что можно дробь сократить на n и получить дробь . Говорят еще, что можно разделить числитель и знаменатель на общий множитель n.

Поэтому основное свойство дробей можно сформулировать по-другому:

Если числитель и знаменатель дроби имеют общий множитель, отличный от 1, то дробь можно сократить на этот множитель. При этом получится дробь, равная данной.

Пример. Сократить дроби

Решение.

Если р—натуральное число, то справедливо равенство

Действительно,

Дробь называется несократимой, если ее числитель и знаменатель не имеют общих простых делителей.

Например, дроби несократимые дроби, так как числа 1 и 2, 3 и 4, б и 7, 11 и 8 не имеют общих простых делителей.

Для каждой дроби существует единственная равная ей несократимая дробь.   

Например,

Левые части равенств—данные дроби, а правые равные им несократимые дроби.

Чтобы получить несократимую дробь, равную данной дроби, надо сократить данную дробь на наибольший общий делитель ее числителя и знаменателя. Часто наибольший общий делитель числителя и знаменателя указать трудно. В этом случае сокращение дроби выполняют постепенно.

Пример. Сократить дробь 

Решение.

 

 

 

 

 







Видеотека

-->

Яндекс.Метрика