Особенности построения

Содержание материала

НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ

 

ДЕЛЕНИЕ ОТРЕЗКОВ ПРЯМЫХ НА РАВНЫЕ ЧАСТИ

 

Из многочисленных построений здесь рассматрива­ются только те, которые часто встречаются при вы­полнении чертежей.

Деление отрезка прямой на две и четыре равные части выполняется в следующей последовательности.

Из концов отрезка А В циркулем проводят две дуги окружности радиусом R, несколько большим поло­вины данного отрезка, до взаимного пересечения в точках n и m  (рис. 43, а). Точки тип соединяют пря­мой, которая пересекает отрезок АВ в точке С. Точка С делит отрезок А В на две равные части. Проделав подобное построение для отрезка АС, находим его середину — точку D. Повторив построение для отрезка СВ, разделим отрезок на четыре равные части.

Рис. 43 Деление отрезка прямой на две и четыре равные части



При вычерчивании детали, показанной на рис. 43, б, применяется способ деления отрезка на четыре части.

Деление отрезка прямой на любое число равных частей. Пусть отрезок А В требуется разделить на И равных частей. Для этого из любого конца данного отрезка, например из точки В (рис. 44, проводят под произвольным острым углом вспомогательную прямую линию ВС, на которой от точки В измеритель­ным циркулем откладывают 11 равных отрезков произвольной величины. Крайнюю точку 11 последней отложенной части соединяют с точкой А прямой Затем с помощью линейки и угольника проводят ряд прямых, параллельных прямой которые и разделяют отрезок А В на 11 равных частей.

Рис. 44 Деление отрезка прямой на любое число равных частей.

На рис. 44, б показана деталь, при изготовлении которой необходимо разместить 10 центров отверстий; отверстия равномерно расположены на длине L. В этом случае применяется описанный выше способ деления отрезка прямой на равные части.

 

 

ПОСТРОЕНИЕ И ИЗМЕРЕНИЕ УГЛОВ ТРАНСПОРТИРОМ

 

Транспортир — это прибор для измерения и построе­ния углов. Это полукруг с разбивкой на градусы, сое­диненный с опорной планкой.

Рис. 45 Транспортир

Для измерения угла транспортир прикладывают опорной планкой к одной из сторон данного угла (рис. 45, а) так, чтобы вершина угла (точка А) совпадала с точкой О на транспортире. Величину угла САВ в гра­дусах определяют по шкале транспортира.

Для построения угла заданной величины (в градусах) со стороной А В и вершиной в точке к приклады­вают транспортир так, чтобы его центр (точка О) сов­пал с точкой А прямой АВ, затем у деления шкалы транспортира, соответствующего заданному числу градусов (например, 55°), наносят точку n. Транспортир убирают и проводят через точку n отрезок АС — полу­чают заданный угол САВ (рис. 45, б).

Рис. 46 Построение углов при помощи угольников и рейсшины

Углы можно строить при помощи угольников с углами 45, 30 и 60° и линейки или рейсшины. На рис. 46 показано, как при различных положениях угольников на рейсшине можно строить углы 60 (120), 30 (150), 45° (135°) и другие при использовании одновременно двух угольников.. 

 

 

ПОСТРОЕНИЕ И ДЕЛЕНИЕ УГЛОВ

 

Деление угла на две и четыре равные части. Из вер­шины угла провести произвольным радиусом дугу до пересечения со сторонами угла в точках (рис. 47, а). Из полученных точек проводят две дуги радиусом R, несколько большим половины длины дуги n и к, до взаимного пересечения в точке m.   Вершину угла соединяют с точкой т прямой, которая делит угол ВАС пополам. Эта прямая называется биссектрисой угла ВАС. Повторяя это построение с полученными углами В Ат и nАС угол ВАС можно разделить на четыре равные части и т. д.

 

Рис. 47 Деление угла на две и четыре равные части.

 

Деление прямого угла на три равные части. Из вер­шины А прямого угла (рис. 47, б) произвольным ради­усом R описывают дугу окружности до пересечения ее со сторонами прямого угла в точках a и b из которых проводят дуги окружности того же радиуса R до пересечения с дугой ab в точках m и n. Точки m и n соединяют с вершиной угла А прямыми и получают стороны Аm и Аn углов В Аm и nА С,равных 1/3 прямого угла, т. е. 30°. Если каждый из этих углов разделить пополам, то пря­мой угол будет разделен на шесть равных частей, ка­ждый из углов будет равняться 15°. Прямой угол АВС можно разделить на три равные части угольником с углами 30 и 60° (рис. 48, а). При выполнении чертежей нередко требуется разделить прямой угол на две рав­ные части. Это можно выполнять угольником с углом 45° (рис. 48,     б).

Рис. 48

Построение угла, равного данному. Пусть задан угол ВАС. Требуется построить такой же угол. Через произвольную точку А1 проводим прямую А1С1. Из точки А описываем дугу произвольным радиусом R, которая пересечет угол ВАС в точках (рис. 49,а). Из точки A 1 проводим дугу тем же радиусом и полу­чаем точку m1. Из точки A1 проводим дугу радиусом R1 равным отрезку mn, до пересечения с ранее прове­денной дугой радиуса R в точке n1 (рис. 49, б). Точку n1 соединяем с точкой А1 и получаем угол B1A1C1 вели­чина которого равна заданному углу ВАС.

Применение вышеизложенного построения угла по заданному показано на рис. 49, в и г. На рис. 49, в  изоб­ражена деталь, чертеж которой надо вычертить, а на рис. 49, г  показан этот чертеж, при выполнении кото­рого использован способ построения угла по заданно­му.

 

Рис. 49 Построение угла, равного данному.

 

 

СПОСОБЫ ПОСТРОЕНИЯ МНОГОУГОЛЬНИКОВ

 

Способ триангуляции. Построение многоугольников этим способом основано на последовательном построе­нии ряда треугольников, примыкающих сторонами друг к другу. Этот способ будет применяться в дальней­шем при построении разверток поверхностей геоме­трических тел.

Рассмотрим пример такого построения. На рис. 50, а показана пластина с пятиугольным отверстием. Изме­ряя длины сторон пятиугольника, можно построить на чертеже контурное очертание многоугольного отвер­стия.

Рис. 50 Способ триангуляции и построение многоугольника методом прямоугольных координат

Треугольники в рассматриваемом многоугольнике можно получить, проведя диагонали 14  (рис. 50, а). Последовательность построения многоугольника на чертеже в данном примере следующая.

На детали произвольно выбираем базовую линию (например, А В), на которую из точек 7 и 2 опускаем перпендикуляр, и получаем точки E и G. На чертеже наносим базовую линию A1B1 на которой откладываем отрезок E1G1 равный отрезку EG. Из точек и G, восставляем перпендикуляры, на которых отклады­ваем взятые с детали отрезки и G1 (рис. 50, б). Получим точки 11и21. Из точек как из центров, циркулем описываем две дуги радиусами, равными отрезками 13  и 23, взятых с детали. Точка пересечения дуг является вершиной 31 искомого треугольника 112131. Таким же способом из точек 71 и 31 описываем две дуги радиусами, равными отрезкам 34 и 14, нахо­дим вершину 41. Затем из точек 41 и 11, как из центров, описываем две дуги радиусами, равными отрезкам 45  и 15, определяем последнюю вершину пятиугольника 51(рис. 50, б).

Построение многоугольника методом прямоугольных координат показано на рис. 50, в. В этом случае из вер­шин многоугольника 12345 (рис. 50, а) опускаем пер­пендикуляры на линию АВ, получаем точки GDEFG. Расстояние между этими точками откладываем на пря­мой A1B1(pиc. 50, в). Из полученных точек C1D1E1F1G1восставляем перпендикуляры, на которых отклады­ваем отрезки С5 D4, E1, F3, G2. Искомые точки 71, 21, 31, 41, 51на чертеже соединяют и получают чертеж многоугольника.

 

 

ОПРЕДЕЛЕНИЕ ЦЕНТРА ДУГИ ОКРУЖНОСТИ

 

Многие детали машин и приборов имеют контур очертания, состоящий из прямых линий, лекальных кривых и дуг окружностей. При вычерчивании деталей часто приходится определять величину радиусов дуг окружностей контурных очертаний детали и находить положение центров этих дуг. На рис. 51, а показана деталь (кронштейн), левая часть ребра которой выполнена по дуге окружности.

 

 

Рис. 51 Определение центра дуги окружности

Чтобы найти положение центра и величину радиуса данной дуги, предварительно делают отпечаток дуги на бумаге. При помощи циркуля и линейки можно определить центр и размер радиуса дуги окружности, для этого на отпечатке дуги намечают три произ­вольно расположенные на ней точки А, В и С (рис. 51, б) и проводят хорды АВ и ВС. При помощи циркуля и линейки проводят перпендикуляры через середины хорд         А В и ВС. Точка пересечения перпендикуляров

(точка О) является искомым центром дуги детали, а расстояние от точки О до любой точки дуги будет раз­мером радиуса.

 

 


 

ДЕЛЕНИЕ ОКРУЖНОСТИ НА РАВНЫЕ ЧАСТИ

 

 

 

Некоторые детали машин и приборов имеют эле­менты, равномерно расположенные по окружности, например, детали на рис. 52—59. При выполнении чер­тежей подобных деталей необходимо знать правила деления окружности на равное количество частей.

Деление окружности на четыре и восемь равных частей. На рис. 52, а показана крышка, в которой име­ется восемь отверстий, равномерно расположенных по окружности. При построении чертежа контура крышки (рис. 52 г) необходимо разделить окружность на восемь равных частей. Это можно сделать с помощью угольника с углами 45° (рис. 52, в), гипоте­нуза угольника должна проходить через центр окруж­ности, или построением.

Рис. 52 Деление окружности на четыре и восемь равных частей.

Два взаимно перпендикулярных диаметра окружно­сти делят ее на четыре равные части (точки 7, 3, 5, 7 на рис. 52, б). Чтобы разделить окружность на восемь равных частей, применяют известный прием деления прямого угла с помощью циркуля на две равные части. Получают точки 2, 4, 6, 8.

Деление окружности на три, шесть и двенадцать рав­ных частей. Во фланце (рис. 53, а) имеется три отвер­стия, равномерно расположенных по окружности. При выполнении чертежа контура фланца (рис. 53, г) нужно разделить окружность на три равные части.

Для нахождения точек, делящих окружность радиуса R на три равные части, достаточно из любой точки окружности, например точки А, провести дугу ради­усом R. Пересечения дуги с окружностью дают две искомые точки 2 и 3; третья точка деления будет нахо­диться на пересечении оси окружности, проведенной из точки Л, с окружностью (рис. 53, б).

Рис. 53 Деление окружности на три части

Разделить окружность на три равные части можно также угольником с углами 30 и 60° (рис. 53, в), гипотенуза угольника должна проходить через центр окруж­ности.

На рис. 54, б показано деление окружности цирку­лем на шесть равных частей. В этом случае выполня­ется то же построение, что на рис. 53, б но дугу описы­вают не один, а два раза, из точек и радиусом R , равным радиусу окружности.

Разделить окружность на шесть равных частей можно и угольником с углами 30 и 60° (рис. 54, в). На рис. 54, а показана крышка, при выполнении чертежа которой необходимо выполнить деление окружности на шесть частей.

Рис. 54 Деление окружности на шесть равных частей

Чтобы выполнить чертеж детали (рис. 55, а), кото­рая имеет 12 отверстий, равномерно расположенных по окружностям, нужно разделить осевую окружность на 12 равных частей (рис. 55, г).

При делении окружности на 12 равных частей с помощью циркуля можно использовать тот же прием, что и при делении окружности на шесть равных частей (рис. 54, б),но дуги радиусом R описывать четыре раза из точек 1, 7, 4и 10 (рис. 55, б).

Используя угольник с углами 30 и 60° с последующим поворотом его на 180°, делят окружность на 12 равных частей (рис. 55, в).

Рис. 55 Деление окружности на 12 равных частей

Деление окружности на пять, десять и семь равных частей. В плашке (рис. 56, а) имеется пять отверстий, равномерно расположенных по окружности. Выпол­няя чертеж плашки (рис. 56, в), необходимо разделить окружность на пять равных частей. Через намеченный центр О (рис. 56, б)

Рис. 56 Деление окружности на пять равных частей

при помощи рейсшины и уголь­ника проводят осевые линии и из точки О циркулем описывают окружность заданного диаметра. Из точки А радиусом R, равным радиусу данной окружности, проводят дугу, которая пересечет окружность в точке n. Из точки n опускают перпендикуляр на горизон­тальную осевую линию, получают точку С. Из точки С радиусом R1 равным расстоянию от точки С до точки 1, проводят дугу, которая пересечет горизонтальную осевую линию в точке т. Из точки 1 радиусом R , рав­ным расстоянию от точки 1 до точки m, проводят дугу, пересекающую окружность в точке 2. Дуга 12 является 1/5 длины окружности. Точки 3,4 и 5 находят, отклады­вая циркулем отрезки, равные m1.

Деталь «звездочка» (рис. 57, а) имеет 10 одинаковых элементов, равномерно расположенных по окружно­сти. Чтобы выполнить чертеж звездочки (рис. 57, я), следует окружность разделить на 10 равных частей. В этом случае следует применить то же построение, что и при делении окружности на пять частей (см. рис. 56, б). Отрезок п1 будет равняться хорде, которая делит окружность на 10 равных частей.

Рис. 57 Деление окружности на десять равных частей

На рис. 58, а изображен шкив, а на рис. 58, в — чер­теж шкива, где окружность разделена на семь равных частей.

Деление окружности на семь равных частей пока­зано на рис. 58, б. Из точки А проводится вспомога­тельная дуга радиусом R, равным радиусу данной окружности, которая пересечет окружность в точке . Из точки n опускают перпендикуляр на горизонталь­ную осевую линию. Из точки 1 радиусом, равным отрезку , делают по окружности семь засечек и полу­чают семь искомых точек.

Рис. 58 Деление окружности на семь равных частей

 

Деление окружности на любое число равных частей. С достаточной точностью можно делить окружность на любое число равных частей, пользуясь таблицей коэффициентов для подсчета длины хорды (табл. 9).

Зная, на какое число (n) следует разделить окруж­ность, находят по таблице коэффициент . При умно­жении коэффициента k на диаметр окружности D получают длину хорды l, которую циркулем отклады­вают на окружности n раз.

При построении чертежа кольца (рис. 59, а) необхо­димо окружность диаметра D=142 мм разделить на 32 равные части. Количеству частей окружности n=32 соответствует коэффициент k=0,098. Подсчитав длину хорды l=Dk=142x0,098= 13,9 мм, ее циркулем откла­дывают на окружности 32 раза (рис. 59, б и в).

Таблица 9 Коэффициенты для подсчета хорды

 

 

 

 

 

 

 

 

 

 

 

 


 

 

СОПРЯЖЕНИЕ ЛИНИЙ

 

 

 

При вычерчивании деталей машин и приборов, кон­туры очертаний которых состоят из прямых линий и дуг окружностей с плавными переходами от одной линии в другую, часто применяют сопряжения. Сопря­жением называется плавный переход одной линии в другую. На рис. 60 показаны примеры применения сопряжений.

Рис. 60

Контур  рычага (рис. 60а) состоит из отдельных линий, плавно переходящих одна в другую, например, в точках А, А1 виден плавный переход от дуги окруж­ности к прямой линии, а в точках В, В1 — от дуги одной окружности к дуге другой окружности (рис. 60, б). На рис. 60, в изображен двурогий крюк. На чертеже кон­тура крюка (рис. 60, г) в точке А виден плавный пере­ход от дуги окружности D=200 к прямой линии, а в точке В — от дуги окружности радиуса R460 к дуге ра­диуса R260.

Для точного и правильного выполнения чертежей необходимо уметь выполнять построения сопряжений, которые основаны на двух положениях.

  1. Для сопряжения прямой линии и дуги необходимо, чтобы центр окружности, которой принадлежит дуга, лежал на перпендикуляре к прямой, восставленном из точки сопряжения (рис. 61, а).
  2. Для сопряжения двух дуг необходимо, чтобы центры окружностей, которым принадлежат дуги, ле­жали на прямой, проходящей через точку сопряжения (рис. 61, 6).

Рис. 61

 

 

 

СОПРЯЖЕНИЕ ДВУХ СТОРОН УГЛА ДУГОЙ ОКРУЖНОСТИ ЗАДАННОГО РАДИУСА

 

При выполнении чертежей деталей, показанных на рис. 62, б, г, е, выполняют построение сопряжения двух сторон угла дугой окружности заданного радиуса. На рис. 62, а выполнено построение сопряжения сто­рон острого угла дугой, на рис. 62, в — тупого угла, на рис. 62, д — прямого.

Сопряжение двух сторон угла (острого или тупого) дугой заданного радиуса R выполняют следующим образом (рис. 62, а и в).

Параллельно сторонам угла на расстоянии, равном радиусу дуги R, проводят две вспомогательные прямые линии. Точка пересечения этих прямых (точка О) будет центром дуги радиуса Я, т. е. центром сопряже­ния. Из центра О описывают дугу, плавно переходя­щую в прямые — стороны угла. Дугу заканчивают в точках сопряжения n и n1 которые являются Основаниями перпендикуляров, опущенных из центра О на сто­роны угла.

Рис. 62

При построении сопряжения сторон прямого угла центр дуги сопряжения проще находить с помощью циркуля (рис. 62, д). Из вершины угла А проводят дугу радиусом R, равным радиусу сопряжения. На сторонах угла получают точки сопряжения n и n1 . Из этих точек, как из центров, проводят дуги радиусом R до взаим­ного пересечения в точке О, являющейся центром со­пряжения. Из центра О описывают дугу сопряжения.

 

 

 

СОПРЯЖЕНИЕ ПРЯМОЙ С ДУГОЙ ОКРУЖНОСТИ

 

Сопряжение прямой с дугой окружности может быть выполнено при помощи дуги с внутренним касанием (рис. 63, в) и дуги с внешним касанием (рис. 63, а).

На рис. 63, а показано сопряжение дуги окружности радиусом R и прямой линии А В дугой окружности радиуса r с внешним касанием. Для построения такого сопряжения проводят окружность радиуса R и прямую АВ. Параллельно заданной прямой на расстоянии, рав­ном радиусу r (радиус сопрягающей дуги), проводят прямую ab. Из центра О проводят дугу окружности

 

Рис. 63

 

радиусом, равным сумме радиусов и r, до пересече­ния ее с прямой ab в точке О1 Точка О1 является цент­ром дуги сопряжения.

Точку сопряжения с находят на пересечении прямой 00 1 с дугой окружности радиуса R. Точка сопряжения C1 является основанием перпендикуляра, опущенного из центра О1 на данную прямую При помощи ана­логичных построений могут быть найдены точки 02,

c2, c3.

На рис. 63, б показан кронштейн, при вычерчивании контура которого необходимо выполнить построения, описанные выше.

На рис. 63, в выполнено сопряжение дуги радиуса R с прямой А В дугой радиуса r с внутренним касанием. Центр дуги сопряжения О1 находится на пересечении вспомогательной прямой, проведенной параллельно данной прямой на расстоянии r, с дугой вспомогатель­ной окружности, описанной из центра О радиусом, рав­ным разности Rr. Точка сопряжения является основанием перпендикуляра, опущенного из точки О1 на данную прямую. Точку сопряжения с находят на пересечении прямой ОО1 с сопрягаемой дугой. Такое сопряжение выполняют, например, при вычерчивании контура маховика, показанного на рис. 63, г.

 

 

СОПРЯЖЕНИЕ ДУГИ С ДУГОЙ

 

Сопряжение двух дуг окружностей может быть вну­тренним, внешним и смешанным.

При внутреннем сопряжении центры O и O1 сопря­гаемых дуг находятся внутри сопрягающей дуги ради­уса R (рис. 64, б).

При внешнем сопряжении центры и сопрягае­мых дуг радиусов R1 и R2 находятся вне сопрягающей дуги радиуса R (рис. 64, в).

При смешанном сопряжении центр О, одной из сопрягаемых дуг лежит внутри сопрягающей дуги

 

Рис. 64

 

радиуса R, а центр О другой сопрягаемой дуги вне ее (рис. 65, а).

На рис. 64, а показана деталь (серьга), при вычерчи­вании которой необходимо построение внутреннего и внешнего сопряжения.

Построение внутреннего сопряжения.

Задано:

а)      радиусы сопрягаемых окружностей R1 и R2

б)      расстояния l1 и l2 между центрами этих дуг;

в)      радиус  R  сопрягающей дуги.

Требуется:

а)      определить положение центра 02 сопрягающей дуги;

б)      найти точки сопряжения  s1 и s

в)      провести дугу сопряжения.

Построение сопряжения показано на рис. 64, б. По заданным расстояниям между центрами 11 и l2 на чер­теже намечают центры О и O1 из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О1 про­водят вспомогательную дугу окружности радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R2, а из центра О — радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R1 Вспомогательные дуги пересекутся в точке 02 которая и будет искомым центром сопрягающей дуги.

Для нахождения точек сопряжения точку 02 соеди­няют с точками О и О1 прямыми линиями. Точки пере­сечения продолжения прямых 020 и 020  с сопрягае­мыми дугами являются искомыми точками сопряжения (точки S и s1).

Радиусом R из центра Ог проводят сопрягающую дугу между точками сопряжения s и s1

Построение внешнего сопряжения.

Задано:

а)      радиусы R1и R2 сопрягаемых дуг окружностей;

б)      расстояния и l2 между центрами этих дуг;

в)      радиус R сопрягающей дуги.

 

Рис. 65

Требуется:

а)      определить положение центра 02 сопрягающей дуги;

б)      найти точки сопряжения и s1;

в)      провести дугу сопряжения.

Построение внешнего сопряжения показано на рис. 64, в. По заданным расстояниям между центрами l1 и l2 на чертеже находят точки О и О1 из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1, и сопряга­ющей         R, а из центра О1 — радиусом, равным сумме

радиусов сопрягаемой дуги R2 и сопрягающей R. Вспо­могательные дуги пересекутся в точке O2, которая будет искомым центром сопрягающей дуги Для нахождения точек сопряжения центры дуг сое-

 

Рис. 66

 

диняют прямыми линиями 002 и 0102. Эти две пря­мые пересекают сопрягаемые дуги в точках сопряже­ния S  и s1

Из центра 02 радиусом R проводят сопрягающую ду­гу, ограничивая ее точками сопряжения и

Построение смешанного сопряжения. Пример сме­шанного сопряжения приведен на рис. 65, и где изображены кронштейн и его чертеж.

Задано:

а) радиусы Rx и R2 сопрягаемых дуг окружностей;

б)      расстояния l1 и l2 между центрами этих дуг;

в)      радиус R сопрягающей дуги.

Требуется:

а)      определить положение центра 02 сопрягающей дуги;

б)      найти точки сопряжения s и s1

в)      провести дугу сопряжения.

По заданным расстояниям между центрами l1 и l2 на чертеже намечают центры 0 и 01, из которых описы­вают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1 и сопрягающей R, а из центра 01 — радиусом, равным разности радиусов R и R2. Вспомогательные дуги пересекутся в точке 02, которая будет искомым центром сопряга­ющей дуги.

Соединив точки О и 02 прямой, получают точку сопряжения соединив точки О1 и 02, находят точку сопряжения s. Из центра 02 проводят дугу сопряжения от s до s1

При вычерчивании контура детали необходимо разо­браться, где имеются плавные переходы, и предста­вить себе, где надо выполнить те или иные виды сопря­жения.

Для приобретения навыков построения сопряжения выполняют упражнения по вычерчиванию контуров сложных деталей. Перед упражнением необходимо просмотреть задание, наметить порядок построения сопряжений и только после этого приступить к выпол­нению построений.

На рис. 66, а изображена деталь (кронштейн), а на рис. 66, б, в, г показана последовательность выполне­ния контурного очертания этой детали с построением различных видов сопряжений.

 


 КОРОБОВЫЕ КРИВЫЕ ЛИНИИ

 

 

 

Контуры таких деталей, как фланец и кулачок, могут ограничиваться коробовыми кривыми. Коробо­вые кривые состоят из сопрягающихся дуг окружно­стей различных диаметров. К таким кривым относятся овалы, овоиды, завитки.

 

 

 ПОСТРОЕНИЕ ОВАЛА И ОВОИДА

 

Последовательность построения овала по заданному размеру большой оси овала производят следующим образом (рис. 67, а). Ось А В делят на три равные части (A1O, 0102, 02В). Радиусом, равным 0202, из точек деления О1 и 02 проводят окружности, пересекающи­еся в точках      m и n.

Соединив точки п и т с точками и 02, получают прямые nO1 n02, m01 и m02, которые продолжают до пересечения с окружностями. Полученные точки 1, 2, 3 и 4 являются точками сопряжения дуг. Из точек m и n, как из центров, радиусом равным n2 и m3 , про­водят верхнюю дугу 12 и нижнюю дугу 34.

Контур фланца, изображенный на рис. 67, б, имеет форму овала. Построение овала по двум заданным осям АВ и CD приведено на рис. 67, в.

Проводят оси АВ и CD. Из точки их пересечения радиусом ОС (половина малой оси овала) проводят Контуры таких деталей, как фланец и кулачок, могут ограничиваться коробовыми кривыми. Коробо­вые кривые состоят из сопрягающихся дуг окружно­стей различных диаметров. К таким кривым относятся овалы, овоиды, завитки.

Рис. 67

дугу до пересечения с большой осью овала в точке N. Точку А соединяют прямой с точкой С и на ней от точки С откладывают отрезок   , получают точку N1.

В середине отрезка AN1 восставляют перпендикуляр и продолжают его до пересечения с большой и малой осями овала в точках 01 и n. Расстояние 001 отклады­вают по большой оси овала вправо от точки О, а рас­стояние on от точки О откладывают по малой оси овала вверх, получают точки  Точки n и n1, явля­ются центрами верхней дуги 12 и нижней дуги 34 овала, а точки 01 и 02 — центрами дуг 13 и 24. Получают искомый овал.

Овоид в отличие от овала имеет только одну ось сим­метрии. Радиусы R и R1 дуг окружностей, центры кото­рых лежат на оси симметрии овоида, не равны друг другу (рис. 67, д).

Построение овоида по заданной оси АВ выполняется в следующей последовательности (рис. 67, д).

Проводят окружность диаметром, равным оси овоида. Из точек А и В через точку (точка пересе­чения окружности радиуса R с осью симметрии)

прово­дят прямые. Из точек А и В, как из центров, радиусом R2, равным оси АВ, проводят дуги Аn и      Bm, а из центра

О1радиусом R1 проводят малую дугу овоида nm.

На рис. 67, е показана часть распределительного вала двигателя; профиль кулачков вала имеет форму овоида.

 

 

 

ПОСТРОЕНИЕ ЗАВИТКОВ

 

Завиток — плоская спиральная кривая, вычерчивае­мая циркулем путем сопряжения дуг окружностей.

Построение завитков выполняют при вычерчива­нии таких деталей, как пружины и спиральные направ­ляющие (рис. 68,а).

Построение завитков выполняется из двух, трех и более центров и зависит от формы и размеров «глаз­ка», который может быть окружностью, правильным треугольником, шестиугольником и т. п. Последова­тельность построения завитка следующая.

 

Рис. 68 Завиток

 

Вычерчивается в тонких линиях контур «глазка», например окружность с диаметром 0102 (рис. 68, б). Из точек O1 и 02 как из центров, проводят две сопря­женные между собой полуокружности. Верхняя полу­окружность 021 из центра 01, нижняя полуокружность 12 из центра О2 Получается искомый завиток.

На рис. 68, в «глазок» имеет форму правильного тре­угольника 00102. Стороны треугольника продолжа­ют. Приняв за центры сопряжения вершины треуголь­ника «глазка», проводят в направлении движения часо­вой стрелки ряд сопряженных между собой дуг. Цент­ром первой дуги является точка , центром второй — точка О1.

 

 


 ПОСТРОЕНИЕ УКЛОНА И КОНУСНОСТИ

 

 

ПОСТРОЕНИЕ И ОБОЗНАЧЕНИЕ УКЛОНА

 

Уклоном называют величину, характеризующую наклон одной прямой линии к другой прямой. Уклон выражают дробью или в процентах.

Уклон i отрезка ВС относительно отрезка ВА опре­деляют отношением катетов прямоугольного тре­угольника АВС (рис. 69, а), т. е.

Уклон

Для построения прямой ВС (рис. 69, а) с заданной величиной уклона к горизонтальной прямой, например 1:4, необходимо от точки А влево отложить отрезок А В, равный четырем единицам длины, а вверх отрезок АС, равный одной единице длины. Точки С и В соединяют прямой, которая дает направление искомого уклона.

Рис. 69 Уклон

Уклоны применяются при вычерчивании деталей, например, стальных балок и рельсов, изготовляемых на прокатных станах, и некоторых деталей, изготов­ленных литьем (рис. 69, д).

При вычерчивании контура детали с уклоном сна­чала строится линия уклона (рис. 69, в и г), а затем контур.

Если уклон задается в процентах, например, 20% (рис. 69, б), то линия уклона строится так же, как гипо­тенуза прямоугольного треугольника. Длину одного из катетов принимают равной 100%, а другого — 20%. Очевидно, что уклон 20% есть иначе уклон 1:5.

По ГОСТ 2.307—68 перед размерным числом, опре­деляющим уклон, наносят условный знак, острый угол которого должен быть направлен в сторону уклона (рис. 69, в и г).

 

 

ПОСТРОЕНИЕ И ОБОЗНАЧЕНИЕ КОНУСНОСТИ

 

На рис. 70, а даны для примера детали: оправка, ко­нус и сверло, которые имеют конусность.

Рис. 70 Построение конусности

Конусностью называется отношение диаметра осно­вания конуса к его высоте (рис. 70, б), обозначается конусность буквой С. Если конус усеченный (рис. 70, в) с диаметрами оснований D и d и длиной L, то конус­ность определяется по формуле:

Конусность

Например (рис. 70, в), если известны размеры D=30 мм, d= 20 мм и L=70 мм, то

Конусность

 

Если известны конусность С, диаметр одного из оснований конуса d и длина конуса L, можно опреде­лить второй диаметр конуса. Например, С=1:7,d=20

мм и L=70 мм; D находят по формуле D=CL+d= 1/7x70+20=30 мм (рис. 70, г).

По ГОСТ 2.307—68 перед размерным числом, харак­теризующим конусность, необходимо наносить услов­ный знак конусности, который имеет вид равнобедрен­ного треугольника с вершиной, направленной в сто­рону вершины конуса (рис. 70, в и г).

Обычно на чертеже конуса дается диаметр большего основания конуса, так как при изготовлении коничес­кой детали этот диаметр можно измерить значительно легче и точнее.

Нормальные конусности и углы конусов устанавли­вает ГОСТ 8593—81 (СТ СЭВ 512—77). ГОСТ 25548— 82 (СТ СЭВ 1779—79) устанавливает термины и опре­деления.

 


 

ЛЕКАЛЬНЫЕ КРИВЫЕ

 

 

 

ВЫЧЕРЧИВАНИЕ КРИВЫХ ПО ЛЕКАЛУ

 

При выполнении чертежей часто приходится прибе­гать к вычерчиванию кривых, состоящих из ряда со­пряженных частей, которые невозможно провести циркулем. Такие кривые строят обычно по ряду при­надлежащих им точек, которые затем соединяют плав­ной линией сначала от руки карандашом, а затем обво­дят при помощи лекал (рис. 71).

Рассматриваемые лекальные кривые располагаются в одной плоскости и называются поэтому плоскими.

Рис. 71 Лекало

Пространственные кривые здесь не рассматриваются.

Чтобы начертить плавную лекальную кривую, необ­ходимо иметь набор из нескольких лекал. Выбрав подходящее лекало, надо подогнать кромку части лекала к возможно большему количеству заданных точек кривой. На рис. 71 участок кривой между точ­ками 1—6 уже обведен. Чтобы обвести следующий уча­сток кривой, нужно приложить кромку лекала, напри­мер, к точкам 510, при этом лекало должно касаться части уже обведенной кривой (между точками 5 и 6). Затем обводят кривую между точками и 9, оставляя участок между точками 9 и 10 необведенным, что позволит получить кривую между точками 9 и 72 более плавной.

Ниже рассмотрены способы построения кривых, наиболее часто встречающихся в технике.

 

 

КРИВЫЕ КОНИЧЕСКИХ СЕЧЕНИЙ

 

При сечении прямого кругового конуса плоскостя­ми, различно расположенными по отношению к осям конуса, получаются контуры сечения, образующие эллипс, параболу и гиперболу.

При пересечении плоскостью Pv всех образующих конуса получается эллипс (рис. 72, а и б).

При пересечении конуса плоскостью Pv  параллель­ной одной из образующих конуса (рис. 72, в), полу­чается парабола (рис. 72, г).

При пересечении конуса плоскостью Pv параллель­ной оси конуса, получается гипербола (рис. 72, и Если плоскость Pv параллельна оси конуса и прохо­дит через вершину конуса, в сечении получается тре­угольник.

 

Рис. 72

 

Эллипс — замкнутая плоская кривая, сумма рассто­яний каждой точки которой до двух данных точек (фо­кусов), лежащих на большой оси, есть величина посто­янная и равная длине большой оси.

Широко применяемый в технике способ построения эллипса по большой (АВ)и малой (CD) осям представ­лен на рис. 72, б.

Проводят две перпендикулярные осевые линии. Затем от центра О откладывают вверх и вниз по верти­кальной оси отрезки, равные длине малой полуоси, а влево и вправо по горизонтальной оси — отрезки, рав­ные длине большой полуоси.

Из центра О радиусами О А и ОС проводят две кон­центрические окружности и ряд лучей-диаметров. Из точек пересечения лучей с окружностями проводят линии, параллельные осям эллипса, до взаимного пересечения в точках, принадлежащих эллипсу. Полу­ченные точки соединяют от руки и обводят по лекалу.

На рис. 73, а показан резервуар, контурное очерта­ние днища которого имеет форму части эллипса.

Построение очертания днища (половины эллипса) приведено на рис. 73, б. Большой осью эллипса явля­ется диаметр D цилиндрической части резервуара, а малой полуосью эллипса — наибольшее расстояние по вертикали от большой оси до днища.

 

Рис. 73 Резервуар - Эллипс

 

Парабола — плоская кривая, каждая точка которой равноудалена от директрисы DD1 прямой, перпендику­лярной к оси симметрии параболы, и от фокуса F — точки, расположенной на оси симметрии параболы (см. рис. 72, г).

Расстояние KF между директрисой и фокусом назы­вается параметром р параболы. Точка О, лежащая на оси симметрии, называется вершиной параболы и делит параметр р пополам.

Для построения параболы по заданной величине параметра р проводят ось симметрии параболы (на рисунке вертикально) и откладывают отрезок KF=p. Через точку К перпендикулярно оси симметрии прово­дят директрису DD1 Отрезок делят пополам и по­лучают вершину О параболы. От вершины О вниз на оси симметрии намечают ряд произвольных точек l— VI с постепенно увеличивающимся расстоянием между ними. Через эти точки проводят вспомогательные пря­мые, перпендикулярные оси симметрии. На вспомогательных прямых из фокуса F делают засечки ради­усом, равным расстоянию от прямой до директрисы. Например, из точки F на вспомогательной прямой.

Рис. 74 Парабола

 

проходящей через точки делают засечку дугой R1=KV; полученная точка 5 принадлежит параболе.

Если требуется построить параболу по заданной вер­шине О, оси ОС и точке В (рис. 74, а), то строят вспо­могательный прямоугольник ABCO.       Стороны прямо­угольника А В и АО делят на равные части и точки делений нумеруют. Горизонтальный ряд делений сое­диняют лучами с вершиной О, а через точки делений, расположенные на АО, проводят прямые линии, параллельные оси параболы. Точки пересечения гори­зонтальных прямых      11,     2 1,31, с лучами 01, 02, 03, ... принадлежат параболе.

В станкостроении и других отраслях машинострое­ния часто применяются детали, контурные очертания которых выполнены по параболе, например, стойка и рукав радиально-сверлильного станка (рис. 74, б).

Построение параболы для контурного очертания рукава радиально-сверлильного станка приведено на рис. 74, в. Данными для построения являются две точки параболы А и В и направление касательных, проходящих через эти точки и пересекающихся в точке С.

 

Гипербола — плоская кривая, состоящая из двух разомкнутых, симметрично расположенных ветвей (см. рис. 72, е). Разность расстояний от каждой точки гиперболы до двух данных точек (фокусов F и F1) есть величина постоянная и равная расстоянию между вер­шинами гиперболы А и В.

Рассмотрим прием построения гиперболы по задан­ным вершинам А и В и фокусному расстоянию FF1 (рис. 72, е).

Разделив фокусное расстояние пополам, полу­чают точку О, от которой в обе стороны откладывают по половине заданного расстояния между вершинами А и В. Вниз от фокуса  F намечают ряд произвольных точек 1, 2, 3, 4 ... с постепенно увеличивающимся рас­стоянием между ними. Из фокуса F описывают дугу вспомогательной окружности радиусом R , равным, например, расстоянию от вершины гиперболы В до точки 3. Из фокуса F1 проводят вторую дугу вспомога­тельной окружности радиусом r, равным расстоянию от вершины А до точки 3. На пересечении этих дуг находят точки С и C1, принадлежащие гиперболе. Таким же способом находят остальные точки гипербо­лы.

 

Рис. 75 Гипербола

 

Вторую ветвь гиперболы строят аналогичным обра­зом.

На рис. 75 показана проушина с конической поверх­ностью, срезанной двумя плоскостями, параллель­ными оси конуса, контур среза ограничен гиперболой.

 

 

СИНУСОИДА

 

Синусоида — плоская кривая, изображающая изме­нение синуса в зависимости от изменения угла (рис. 76, a).

Величина L называется длиной волны синусоиды, L=πD.

Для построения синусоиды проводят горизонталь­ную ось и на ней откладывают заданную длину волны А В (рис. 76, а). Отрезок А В делят на несколько рав­ных частей, например, на 12. Слева вычерчивают окружность, радиус которой равен величине амплиту­ды, и делят ее также на 12 равных частей; точки деле­ния нумеруют и через них проводят горизонтальные прямые. Из точек деления отрезка AВ восставляют перпендикуляры к оси синусоиды и на их пересечении с горизонтальными прямыми находят точки синусои­ды.

 

Рис. 76 Синусоида

 

Полученные точки синусоиды a1 , a2,a3,... соединяют по лекалу кривой.

При выполнении чертежей деталей или инструмен­тов, поверхности которых очерчены по синусоиде (рис. 76, б и в), величину длины волны обычно выбирают независимо от размера амплитуды г. Напри­мер, при вычерчивании шнека (рис. 76. б) длина волны L меньше размера 2πr. Такая синусоида называется сжатой. Если длина волны больше размера 2πr то синусоида называется вытянутой.

 

 

 

СПИРАЛЬ АРХИМЕДА

 

Спираль Архимеда — плоская кривая, которую описывает точка, движущаяся равномерно от центра О по равномерно вращающемуся радиусу (рис. 77).

 

Рис. 77 Спираль Архимеда

 

Для построения спирали Архимеда задают ее шаг Р, из центра О проводят окружность радиусом, равным шагу Р спирали, и делят шаг и окружность на несколько равных частей (рис. 77, Точки деления нумеруют.

Из центра О проводят радиальные прямые, проходя­щие через точки деления окружности.

Из центра О радиусами 01, 02 и т. д. проводят дуги до пересечения с соответствующими радиальными пря­мыми. Например, дуга радиуса 03 пересекается с пря­мой 031  в точке III. Полученные точки II,..., VIII, принадлежащие спирали Архимеда, соединяют плав­ной кривой по лекалу.

В машиностроении спираль Архимеда применяется, например, для сообщения движения в радиальном направлении кулачкам зажимного патрона токарного станка (рис. 77, а).На тыльной стороне большой кони­ческой шестерни нарезаны канавки по спирали Архи­меда. В канавки входят выступы кулачков, которые также выполнены по спирали. При вращении шестерни кулачки будут перемещаться в радиальном направлении.

 

 

 

ЭВОЛЬВЕНТА

 

Эвольвента окружности — траектория любой точки прямой линии, перекатываемой без скольжения по окружности.

 

Рис. 78 Эвольвента

 

Пусть неподвижный диск диаметром D огибает шнур длиной πВ (рис. 78, а). Один конец шнура закреплен в точке А, а другой при развертывании по направлению стрелок (в натянутом положении) опишет траекторию в виде плоской кривой линии — эвольвенты.

В машиностроении профили зубьев колес и зуборез­ный инструмент — пальцевую фрезу — выполняют по эвольвенте (рис. 78, b).

Для построения эвольвенты заданную окружность диаметра  D делят на несколько равных частей (на рис. 78, в — на 12 частей), которые нумеруют. Из конечной точки (72) проводят касательную к окружности и на ней откладывают отрезок, равный длине окружности πD. Длину окружности делят также на равные части.

Из точек делений окружности 1, 2,3....., 12 проводят

касательные к окружности и на них откладывают отрезки; на первой касательной — отрезок 12 на второй — 12 2' на третьей — 12 3 и т. д. Соединив точки I—XII по лекалу, получают эвольвенту окруж­ности.

ПD. Длину окружности делят также на равные части. Из точек делений окружности 1, 2, 3,    проводят касательные к окружности и на них откладывают отрезки; на первой касательной — отрезок 12 1' ,    на второй — 12 2' ,на третьей — и т. д. Соединив точки I—X11 по лекалу, получают эвольвенту окружности.

 

 

 

ЦИКЛОИДАЛЬНЫЕ КРИВЫЕ


Циклоида — плоская кривая, которую описывает точка А, лежащая на окружности, которая катится без скольжения по прямой CD (рис. 79, а).

Эпициклоида — плоская кривая, которую описывает точка А, лежащая на окружности, которая катится без скольжения, снаружи по направляющей окружности (рис. 79,    б).

Гипоциклоида — плоская кривая, которую описывает точка А, лежащая на окружности, которая катится без скольжения внутри по направляющей окружности (рис. 79, в).

Рис. 79

Построение циклоиды. На направляющей прямой ВС (рис. 79, а) откладывают длину производящей окружности диаметра D, равную nD. Окружность диаметра D и отрезок АA 12 ВС делят на равные части, например, на 12. Из точек делений прямой ВС (1',2',3',...,12') восставляют перпендикуляры до пересечения с продолжением горизонтальной оси окружности в точках 01 ,02 ..., 012, а из точек делений окружности (1, 2, 3, ...,12) проводят горизонтальные прямые. Из точек Ov 02, ..., Ol2, как из центров, проводят окружности диаметра D, которые пересекаясь с горизонтальными линиями, образуют точки А1 ,A2,A3....,A12 , принадлежащие циклоиде.



Построение эпициклоиды. Производящую окружность диаметра D и направляющую окружность радиуса R проводят так, чтобы они касались (рис. 79, ). Производящую окружность диаметра D делят на 12 равных частей. Из центра 0О радиусом, равным R+0,5D, проводят вспомогательную дугу.

Центральный угол а определяют по формуле

Построение эпициклоиды.







Видеотека

-->

Яндекс.Метрика