Получение, свойства и применение рентгеновых лучей

Документальные учебные фильмы. Серия «Физика».

 

 

Рентгеновским излучением называют электромагнитные вол­ны с длиной приблизительно от 80 до 105 нм. Наиболее длинноволновое рентгеновское излучение перекрывается коротковолновым ультрафиолетовым, коротковолновое — длинноволновым g-излучением. По способу получения рент­геновское излучение подразделяют на тормозное и характе­ристическое.

  Устройство рентгеновской трубки. Тормозное рентгеновское излучение



Наиболее распространенным источником рентгеновского излу­чения является рентгеновская трубка, которая представляет собой двухэлектродный вакуумный прибор (рис. 26.1). Подогревный ка­тод 1 испускает электроны 4. Анод 2, называемый часто антикато­дом, имеет наклонную поверхность, для того чтобы направить воз­никающее рентгеновское излучение 3 под углом к оси трубки. Анод изготовлен из хорошо проводящего тепло материала для отвода теплоты, образующейся при ударе электронов. Поверхность анода выполнена из тугоплавких материалов, имеющих большой поряд­ковый номер в таблице Менделеева, например из вольфрама. В от дельных случаях анод специально охлаждают водой или маслом.

Для диагностических трубок важна точечность источника рентгеновских лучей, чего мож­но достигнуть, фокусируя электроны в одном месте анода (антикатода). Поэтому конструктив­но приходится учитывать две противоположные задачи: с одной стороны, электроны должны попадать на одно место антикатода, с другой сторо­ны, чтобы не допустить перегрева, желательно распределение электронов по разным участкам анода. В качестве одного из интересных техниче­ских решений является рентгеновская трубка с вращающимся анодом (рис. 26.2).

В результате торможения электрона (или иной заряженной частицы) электростатическим полем атомного ядра и атомных электронов веществ антикатода возникает тормозное рентге­новское излучение.

Механизм его можно пояснить следующим образом. С движу­щимся электрическим зарядом связано магнитное поле, индук­ция которого зависит от скорости электрона. При торможении уменьшается магнитная индукция и в соответствии с теорией Максвелла появляется электромагнитная волна.

При торможении электронов лишь часть энергии идет на созда­ние фотона рентгеновского излучения, другая часть расходуется на нагревание анода. Так как соотношение между этими частями случайно, то при торможении большого количества электронов возникает рентгеновское излучение с непрерывным (сплошным) спектром. На рис. 26.3 представлены зависимости потока рентге­новского излучения от длины волны l (спектры) при разных на­пряжениях на рентгеновской трубке: U1 <U2<U3.

В каждом из спектров наиболее коротковолновое тормозное из­лучение, соответствующее длине волны lmin, возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона:

откуда

 

Эту формулу можно преобразовать в более удобное для практи­ческих целей выражение:

где lmin — минимальная длина волны, 10 10 м; U — напряжение, кВ. Формула (26.3) соответствует рис. 26.3.

 

Коротковолновое рентгеновское излучение обычно обладает большей проникающей способностью, чем длинноволновое, и на­зывается жестким, а длинноволновое — мягким.

Увеличивая напряжение на рентгеновской трубке, изменяют спектральный состав излучения, увеличивая долю жесткой ком­поненты, как это видно из рис. 26.3 и формулы (26.3).

Если увеличить температуру накала катода, то возрастут эмис­сия электронов и сила тока в трубке. Это приведет к увеличению числа фотонов рентгеновского излучения, испускаемых каждую секунду. Спектральный состав его не изменится. На рис. 26.4 по­казаны спектры тормозного рентгеновского излучения при одном напряжении, но при разной силе тока накала катода: 1н1 < /н2.

Поток рентгеновского излучения вычисляется по формуле

где U и I — напряжение между электродами и сила тока в рентге­новской трубке, Z — порядковый номер атома вещества антика­тода, k = 10-9 В-1 — коэффициент пропорциональности. Спектры, полученные от разных антикатодов при одинаковых U и Iн, изо­бражены на рис. 26.5.

 

 Характеристическое рентгеновское излучение. Атомные рентгеновские спектры

Увеличивая напряжение на рентгеновской трубке, можно заме­тить на фоне сплошного спектра появление линейчатого, который соответствует характеристическому рентгеновскому излучению (рис. 26.6). Оно возникает вследствие того, что ускоренные электроны проникают в глубь атома и из внутренних слоев выби­вают электроны. На свободные места переходят электроны с верх­них уровней (рис. 26.7), в результате высвечиваются фотоны ха­рактеристического излучения.

Как видно из рисунка, характерис­тическое рентгеновское излучение состоит из серий К, L, М и т. д., наименование которых и послужило для обозначения электрон­ных слоев. Так как при излучении Jf-серии освобождаются места в более высоких слоях, то одновременно испускаются и линии дру­гих серий.

В отличие от оптических спектров характеристические рентге­новские спектры разных атомов однотипны. На рис. 26.8 показа­ны спектры различных элементов. Однотипность этих спектров обусловлена тем, что внутренние слои у разных атомов одинаковы и отличаются лишь энергетически, так как силовое воздействие со стороны ядра увеличивается по мере возрастания порядкового номера элемента. Это обстоятельство приводит к тому, что харак­теристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность известна как закон Мозли:

где v — частота спектральной линии, Z — атомный номер испус­кающего элемента, А и В — постоянные.

Экспериментальные зависимости рис. 26.8 иллюстрируют за­кон Мозли (серии К, L, М, по оси абсцисс отложена длина волны

Есть еще одна разница между оптическими и рентгеновскими спектрами. Характеристический рентгеновский спектр атома не зависит от химического соединения, в которое этот атом входит. Так, например, рентгеновский спектр атома кислорода одинаков для О, О2 и Н2О, в то время как оптические спектры этих соедине­ний существенно различны. Эта особенность рентгеновского излу­чения атома послужила основанием и для его названия (характе­ристическое).

Характеристическое излучение возникает всегда при наличии свободного места во внутренних слоях атома независимо от при­чины, которая его вызвала. Так, например, характеристическое излучение сопровождает один из видов радиоактивного распада , который заключается в захвате ядром электрона с внутреннего слоя.

 

  Взаимодействие рентгеновского излучения с веществом

 

Регистрация и использование рентгеновского излучения, а также воздействие его на биологические объекты определяются первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

В зависимости от соотношения энергии hv фотона и энергии ионизации1 Аи имеют место три главных процесса.

Когерентное (классическое) рассеяние.Рассеяние длинно­волнового рентгеновского излучения происходит в основном без из­менения длины волны, и его принято называть когерентным. Оно возникает, если энергия фотона меньше энергии ионизации: hv < Аи.

Так как в этом случае энергия фотона рентгеновского излуче­ния и атома не изменяется, то когерентное рассеяние само по себе не вызывает биологического действия. Однако при создании защи­ты от рентгеновского излучения следует учитывать возможность изменения направления первичного пучка. Этот вид взаимодейст­вия имеет значение для рентгеноструктурного анализа .

Некогерентное рассеяние (эффект Комптона).В 1922 г. А. X. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пуч­ка по сравнению с падающим. Это означало, что длина волны рассе­янного рентгеновского излучения больше, чем падающего. Рассея­ние рентгеновского излучения с изменением длины волны принято называть некогерентным, а само явление — эффектом Комптона.

Он возникает, если энергия фотона рентгеновского излучения боль­ше энергии связи электрона в атоме (энергии ионизации): hv >Аи.

Так как обычно hv >> Аи, и тогда эффект Комптона происходит как бы на свободных электронах, то можно записать приближенно

Это явление обусловлено тем, что при взаимодействии с атомом энергия hv фотона расходуется на образование нового рассеянного фотона рентгеновского излучения с энергией hv', на отрыв электро­на от атома (энергия ионизации Ая) и сообщение электрону кинети­ческой энергии Еи:

Существенно, что в этом явлении (рис. 26.9) наряду с вторичным рентгеновским из­лучением (энергия hv' фотона) появляются электроны отдачи (кинетическая энергия Ек электрона). Атомы или молекулы при этом становятся ионами.

Фотоэффект. При фотоэффекте рентге­новское излучение поглощается атомом, в результате чего вылетают электроны из глубоких оболочек атома. Если энергия фотона недостаточна для ионизации, то фотоэффект может проявляться в возбуждении атомов без вылета электронов. Три основных процесса взаимодействия, рассмотренные выше, являются первичными, они приводят к последующим вторичным, третичным и т. д. явлениям. Так, например, атомы с вакансией (отсутствием) электрона на одной из внутренних оболочек могут излучать характеристический рентгеновский спектр, возбужден­ные атомы могут стать источниками видимого света (рентгенолю-минесценция) и т. п.

На рис. 26.10 приводится схема возможных процессов, возни­кающих при попадании рентгеновского излучения в вещество.

Может происходить несколько десятков процессов, подобных изо­браженному, прежде чем энергия рентгеновского фотона перей­дет в энергию молекулярно-теплового движения.

Процессы, представленные схемой рис. 26.10, лежат в основе явлений, наблюдаемых при действии рентгеновского излучения на вещество. Перечислим некоторые из них.

Рентгенолюминесценция — свечение ряда веществ при рент­геновском облучении. Такое свечение платиносинеродистого ба­рия позволило Рентгену открыть лучи. Это явление используют для создания специальных светящихся экранов с целью визуаль­ного наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку.

Известно химическое действие рентгеновского излучения, на­пример образование перекиси водорода в воде. Практически важ­ный пример — воздействие на фотопластинку, что позволяет фик­сировать такие лучи.

Ионизирующее действие проявляется в увеличении электро­проводимости под воздействием рентгеновских лучей. Это свойство используют в дозиметрии для количественной оценки дейст­вия этого вида излучения.

В результате многих процессов первичный пучок рентгенов­ского излучения ослабляется в соответствии с законом (24.3). За­пишем его в виде

где m — линейный коэффициент ослабления. Его можно пред­ставить состоящим из трех слагаемых соответствующих когерент­ному рассеянию mк , некогерентному mнк и фотоэффекту mф:

Поток рентгеновского излучения ослабляется пропорционально числу атомов вещества, через которое этот поток проходит. Если сжать вещество вдоль оси X, например, в b раз, увеличив в b раз его плотность, то ослабление пучка не изменится, так как число атомов остается прежним. Следовательно, показатель степени в формуле (26.8) не изменится:

х2 — x1/b, так как при сжатии толщина поглощающего слоя уменьшилась в bраз. Из (26.10) имеем m1 = m2/b.

Это означает, что линейный коэффициент ослабления зависит от Плотности вещества.

Поэтому предпочитают пользоваться массовым коэффициен­том ослабления, который равен отношению линейного коэффици­ента ослабления к плотности поглотителя и не зависит от плот­ности вещества:

Здесь под энергией ионизации понимают энергию, необходимую для удаления внутренних электронов за пределы атома или молекулы.

 

Физические основы применения рентгеновского излучения в медицине

 

Одно из наиболее важных медицинских применений рентге­новского излучения — просвечивание внутренних органов с диаг­ностической целью (рентгенодиагностика).

Для диагностики используют фотоны с энергией порядка 60— 120 кэВ. При этой энергии массовый коэффициент ослабления в ос­новном определяется фотоэффектом. Его значение обратно пропор­ционально третьей степени энергии фотона (пропорционально ^.3), в чем проявляется большая проникающая способность жесткого из­лучения, и пропорционально третьей степени атомного номера ве­щества-поглотителя:

где k — коэффициент пропорциональности.

Поглощение рентгеновских лучей почти не зависит от того, в каком соединении атом представлен в веществе, поэтому можно легко сравнить по формуле (26.12) массовые коэффициенты ос­лабления mтк кости Са3(РО4)2 и mтв мягкой ткани или воды Н2О. Атомные номера Са, Р, О и Н соответственно равны 20, 15, 8 и 1. Подставив эти числа в (26.12), получим

Существенное различие поглощения рентгеновского излуче­ния разными тканями позволяет в теневой проекции видеть изо­бражения внутренних органов тела человека.

Рентгенодиагностику используют в двух вариантах: рентгено­скопия — изображение рассматривают на рентгенолюминесцирующем экране, рентгенография — изображение фиксируется на фотопленке.

 







Видеотека

-->

Яндекс.Метрика