Основные законы наследственности
- Подробности
- Категория: Биология
Документальные учебные фильмы. Серия «Биология».
С незапамятных времен людей волновал вопрос о причинах сходства потомков и родителей, о природе вновь возникающих изменений- Наука и практика накопили к середине XIX в. огромный фактический материал. Но в чем причины сходства и различия организмов, долгое время установить не удавалось.
Первый шаг в познании закономерностей наследственности сделал выдающийся чешский исследователь Грегор Мендель. Он выявил важнейшие законы наследственности. Г. Мендель доказал, что признаки организмов определяются дискретными (отдельными) наследственными факторами. Работа Г. Менделя отличалась глубиной и математической точностью. Однако она оставалась неизвестной почти 35 лет — с 1865 до 1900 г.
Переоткрытие законов Менделя вызвало стремительное развитие науки о наследственности и изменчивости организмов, получившей название генетики. Элементарные единицы наследственности стали называть генами. Было доказано, что гены расположены в хромосомах. Но молекулярная структура генов еще долгое время оставалась неизвестной.
В настоящее время установлено, что ген представляет собой участок молекулы ДНК в хромосоме. Ген определяет строение одного из белков живой клетки и тем самым участвует в формировании признака или свойства организма.
Успехи, достигнутые генетикой, столь значительны, что она занимает центральное место в общей биологии.
МОНОГИБРИДНОЕ СКРЕЩИВАНИЕ.
ПЕРВЫЙ ЗАКОН МЕНДЕЛЯ
Гибридологический метод. Основной метод, который Г. Мендель разработал и положил в основу своих опытов, называют гибридологическим. Суть его заключается в скрещивании (гибридизации) организмов, отличающихся друг от друга по одному или нескольким признакам. Поскольку потомков от таких скрещиваний называют гибридами, то и метод получил название гибридологического. Одна из особенностей метода Менделя состояла в том, что он использовал для экспериментов чистые линии, т.е. растения, в потомстве которых при самоопылении не наблюдалось разнообразия по изучаемому признаку. (В каждой из чистых линий сохранялась однородная совокупность генов.) Другой важной особенностью гибридологического метода было то, что Г. Мендель наблюдал за наследованием альтернативных {взаимоисключающих, контрастных) признаков. Например, растения низкие и высокие; цветки белые и пурпурные; форма семян гладкая и морщинистая и т.д. Не менее важная особенность метода — точный количественный учет каждой пары альтернативных признаков в ряду поколений. Математическая обработка опытных данных позволила Г. Менделю установить количественные закономерности в передаче изучаемых признаков. Очень существенно было то, что Г. Мендель в своих опытах шел аналитическим путем: он наблюдал наследование многообразных признаков не сразу в совокупности, а лишь одной пары (или небольшого числа пар) альтернативных признаков.
Гибридологический метод лежит и в основе современной генетитики
Единообразие первого поколения. Правило доминирования.
В том случае, когда родительские организмы отличаются друг от руге! по одному изучаемому признаку, скрещивание называют моногибридным. Г. Мендель проводил опыты с горохом. Среди большого количества сортов он выбрал для первого эксперимента два, отличающихся по одному признаку. Семена одного сорта гороха были желтые, а другого — зеленые. Известно, что горох, как правило размножается путем самоопыления и поэтому в пределах сорта нет изменчивости по окраске семян. Используя это свойство гороха, Мендель произвел искусственное опыление, скрестив сорта отличаюшиеся цветом семян (желтым и зеленым). Независимо от того к какому сорту принадлежали материнские растения, гибридные семена оказались только желтыми.
Следовательно, у гибридов первого поколения проявился признак только одного родителя. Такие признаки Г. Мендель назвал доминантными. Признаки, не проявляющиеся у гибридов первого поколения, он назвал рецессивными. В опытах с горохом признак желтой окраски семян доминировал над зеленой окраской. Таким образом, в потомстве гибридов Г. Мендель обнаружил единообразие первого поколения, т.е. все гибридные семена имели одинаковую окраску. В опытах, где скрещивающиеся сорта отличались и по другим признакам, были получены такие же результаты: единообразие первого поколения и доминирование одного признака над другим.
Впоследствии генетики, изучая наследование разнообразных признаков у растений, животных, грибов, микроорганизмов, обнаружили очень широкое распространение явления доминирования.
Расщепление признаков у гибридов второго поколения. Первый закон Менделя. Из гибридных семян гороха Г. Мендель вырастил растения, которые путем самоопыления произвели семена второго поколения. Среди них оказались не только желтые семена, но и зеленые. Всего он получил 6022 желтых и 2001 зеленое семя. Причем 3/4 семян гибридов второго поколения имели желтую окраску и 1/4 — зеленую. Следовательно, отношение числа потомков второго поколения с доминантным признаком к числу потомков с рецессивным оказалось равным 3:1. Такое явление он назвал расщеплением признаков.
Сходные результаты во втором поколении дали многочисленные опыты по гибридологическому анализу других пар признаков. Основываясь на полученных результатах, Г. Мендель сформулировал свой первый закон — закон расщепления. В потомстве, полученном от скрещивания гибридов первого поколения, наблюдается явление расщепления: четверть особей из гибридов второго поколения несет рецессивный признак, три четверти доминантный.
Гомозиготные и гетерозиготные особи. Для того чтобы выяснить, как будет осуществляться наследование признаков при самоопылении в третьем поколении, Мендель вырастил гибриды второго поколения и проанализировал потомство, полученное от самоопыления. Он выяснил, что 1/3 растений второго поколения, выросших из желтых семян, при самоопылении производила только желтые семена. То же самое отмечалось у растений, выросших из зеленых семян. Все семена, полученные от них, были зелеными. Оставшиеся 2/3 растений второго поколения, выросшие из желтых семян, давали желтые и зеленые семена в отношении 3:1. Таким образом, эти растения были подобны гибридам первого поколения.
Итак, Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготные (от греч. «гомо» — равный, «зигота» — оплодотворенная яйцеклетка). Особи, в потомстве у которых обнаруживается расщепление, назвали гетерозиготными (от греч. «гетеро» — разный).
Причина расщеплення иризнаков у гибридов. Какова причина расщепления признаков в потомстве гибридов? Почему в первом, расщеплении и последующих поколениях возникают особи, дающие в результате скрещивания потомство с доминантным и рецессивным признаками. Обратимся к схеме, на которой символами записаны
результаты опыта по моногибридному скрещиванию. Символы Р, F1, F2, и т.д. обозначают соответственно родительское, первое и второе поколения. Значок Х указывает скрещивание, символ обозначает мужской пол (щит и копьё Марса), а - женский пол (зеркало Венеры).
Ген, отвечающий за доминантный желтый цвет семян, обозначим большой буквой, например А; ген отвечающий за рецессивный зеленый цвет, - малой буквой а.
Схема образования зигот при моногибридном наследовании такова:
где Р — родители, F1 — гибриды первого поколения, F2 — гибриды второго поколения.
Для дальнейших рассуждений необходимо вспомнить основные явления, происходящие в мейозе. В первом делении мейоза происходит образование клеток, несущих гаплоидный набор хромосом (n). Такие клетки содержат только одну хромосому из каждой пары гомологичных хромосом, в дальнейшем из них образуются гаметы. Слияние гаплоидных гамет при оплодотворении ведет к образованию диплоидной (2n) зиготы. Процесс образования гаплоидных гамет и восстановление диплоидности при оплодотворении обязательно происходит в каждом поколении организмов, размножающихся половым способом.
Исходные родительские растения в рассматриваемом опыте были гомозиготными. Следовательно, скрещивание можно записать так: Р(АА х аа). Очевидно, что оба родителя способны производить гаметы только одного сорта, причем растения, имеющие два доминантных гена АА, дают только гаметы, несущие ген А, а растения с двумя рецессивными генами аа образуют половые клетки с геном а. В первом поколении F1 все потомство получается гетерозиготным Аа и имеет семена только желтого цвета, так как доминантный ген А подавляет действие рецессивного гена а. Такие гетерозиготные растения Аа способны производить гаметы двух сортов, несущие гены А и а.
При оплодотворении возникает четыре типа зигот — АА+ Аа+аА+аа, что можно записать как АА+2Аа+аа. Поскольку в нашем опыте гетерозиготные семена Аа также окрашены в желтый цвет, в F2 получается соотношение желтых семян к зеленым, Р иное 3:1. Понятно, что 1/3 растений, которые выросли из желтых семян, имеющих гены АА, при самоопылении снова дает только желтые семена. У остальных 2/3 растений с генами Аа, так же, как у гибридных растений из F1 будут формироваться два разных типа гамет, и в следующем поколении при самоопылении произойдет расщепление признака окраски семян на желтые и зеленые в соотношении 3:1.
Таким образом было установлено, что расщепление признаков в потомстве гибридных растений — результат наличия у них двух генов — А и а, ответственных за развитие одного признака, например окраски семян.
МОНОГИБРИДНОЕ СКРЕЩИВАНИЕ
Аллельные гены. Итак, мы установили, что гетерозиготные особи имеют в каждой клетке два гена — А и а, отвечающих за развитие одного и того же признака. Гены, определяющие альтернативное развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом, называют аллельными генами или аллелями. Любой диплоидный организм, будь то растение, животное или человек, содержит в каждой клетке два аллеля любого гена. Исключение составляют половые клетки — гаметы. В результате мейоза количество хромосом в них уменьшается в 2 раза, поэтому каждая гамета имеет лишь по одному аллельному гену. Аллели одного гена располагаются в одном месте гомологичных хоомосом.
Схематически гетерозиготная особь обозначается так:
Гомозиготные особи при подобном обозначении выглядят так: или , но их можно записать и как АА и аа.
Фенотип и генотип. Рассматривая результаты самоопыления гибридов F2, мы обнаружили, что растения, выросшие из желтых семян, будучи внешне сходными, или, как говорят в таких случаях имея одинаковый фенотип, обладают различной комбинацией генов, которую принято называть генотипом. Таким образом, явление доминирования приводит к тому, что при одинаковом фенотипе особи могут обладать различными генотипами. Понятия «генотип» и «фенотип» — очень важные в биологии. Совокупность всех генов организма составляет его генотип. Совокупность всех признаков организма начиная с внешних и кончая особенностями строения и функционирования клеток и органов, составляет фенотип. Фенотип формируется под влиянием генотипа и условий внешней среды.
Анализирующее скрещивание. По фенотипу особи далеко не всегда можно определить ее генотип. У самоопыляющихся растений генотип можно определить в следующем поколении. Для перекрестно размножающихся видов используют так называемое анализирующее скрещивание. При анализирующем скрещивании особь, генотип который следует определить, скрещивают с особями, гомозиготными по рецессивному гену, т. е. имеющими генотип аа. Рассмотрим анализирующее скрещивание на примере. Пусть особи с генотипами АА и Аа имеют одинаковый фенотип. Тогда при скрещивании с особью, рецессивной по определяемому признаку и имеющей генотип аа, получаются следующие результаты:
Из этих примеров видно, что особи, гомозиготные по доминантному гену, расщепления в F1 не дают, а гетерозиготные особи при скрещивании с гомозиготной особью дают расщепление уже в F1
Неполное доминированне. Далеко не всегда гетерозиготные организмы по фенотипу точно соответствуют родителю, гомозиготному по доминантному гену. Часто гетерозиготные потомки имеют промежуточный фенотип, в таких случаях говорят о неполном доминировании (рис. 34). Например, при скрещивании растения ночная красавица с белыми цветками (аа) с растением, у которого красные цветки (АА), все гибриды F: имеют розовые цветки (Аа). При скрещивании гибридов с розовой окраской цветков между собой в F2 происходит расщепление в отношении 1 (красный): 2 (розовый): 1 (белый).
Принцип чистоты гамет. У гибридов, как мы знаем, объединяются разные аллели, привносимые в зиготу родительскими гаметами. Важно отметить, что разные аллели, оказавшиеся в одной зиготе и, следовательно, в развившемся из нее организме, не влияют Друг на друга. Поэтому свойства аллелей остаются постоянными независимо от того, в какой зиготе они побывают до этого. Каждая гамета содержит всегда только один аллель какого-либо гена.
Цитологическая основа принципа чистоты гамет и закона расщепления состоит в том, что гомологичные хромосомы и расположенные в них аллельные гены распределяются в мейозе по разным гаметам, а затем при оплодотворении воссоединяются в зиготе. В процессах расхождения по гаметам и объединения в зиготу аллельные гены ведут себя как независимые, цельные единицы.
ДИГИБРИДНОЕ СКРЕЩИВАНИЕ. ВТОРОЙ ЗАКОН МЕНДЕЛЯ
Установив закономерности наследования одного признака (моногибридное скрещивание), Мендель начал изучать наследование признаков, за которые отвечают две пары аллельных генов. Скрещивание, в котором участвуют две пары аллелей, называют дигибридным скрещиванием. Поскольку каждый организм характеризуется очень большим числом признаков, а число хромосом ограничено, то каждая из них должна нести большое число генов. Результаты дигибридного скрещивания зависят от того, лежат ли гены, определяющие рассматриваемые признаки, в одной хромосоме или в разных. При дигибридном скрещивании Мендель изучал наследование признаков, за которые отвечают гены, лежащие, как выяснилось значительно позднее, в разных хромосомах.
Независимое наследование. Если в дигибридном скрещивании гены находятся в разных парах хромосом, то пары признаков наследуются независимо друг от друга.
Рассмотрим опыт Менделя, в котором он изучал независимое наследование признаков у гороха. Одно из скрещиваемых растений имело гладкие желтые семена, другое — морщинистые зеленые (рис. 35). В первом поколении все гибридные растения имели глад-
кие желтые семена. Во втором поколении произошло расщепление-315 семян было гладких желтых, 108 — гладких зеленых, 101 — морщинистых желтых, 32 — морщинистых зеленых. Таким образом, в F2 обнаружено четыре фенотипа в соотношении, близком к 9 желтым гладким семенам (АВ), 3 желтым морщинистым (АЬ), 3 зеленым гладким (аВ) и 1 зеленому морщинистому (ab). В кратком виде расщепление в F2 можно записать так: 9АВ: ЗАЬ: ЗаВ: 1ab.
Запишем скрещивание таким образом, чтобы было очевидно расположение генов в хромосомах:
При образовании гамет у особей Fx возможны четыре комбинации двух пар аллелей. Механизм этого процесса показан на рисунке 36. Аллели одного гена, как вы уже знаете, всегда попадают в разные гаметы. Расхождение одной пары генов не влияет на расхождение генов другой пары.
Если в мейозе хромосома с геном А отошла к одному полюсу, то к этому же полюсу, т. е. в ту же гамету, может попасть хромосома как с геном В, так и с геном Ь. Следовательно, с одинаковой вероятностью ген А может оказаться в одной гамете и с геном В, и с геном Ь. Оба события равновероятны. Поэтому сколько будет гамет АВ, столько же и гамет АЬ. Такое же рассуждение справедливо и для гена а, т. е. число гамет аВ всегда равно числу гамет ab.
В результате независимого распределения хромосом в мейозе гибрид образует четыре типа гамет: АВ, АЬ, аВ и ab в равных количествах. Это явление было установлено Г. Менделем и названо законом независимого расщепления или вторым законом Менделя. Он формулируется так: расщепление по каждой паре генов идет независимо от других пар генов.
Решетка Пеннета. Независимое расщепление можно изобразить в виде таблицы (см. рис. 35). По имени генетика, впервые предложившего эту таблицу, она названа решеткой Пеннета. Поскольку в дигибридном скрещивании при независимом наследовании образуются четыре типа гамет, количество типов зигот, образующихся при случайном слиянии этих гамет, равно 4x4, т. е. 16. Ровно столько клеток в решетке Пеннета. Вследствие доминирования А над а и В над b разные генотипы имеют одинаковый фенотип. Поэтому количество фенотипов равно только четырем. Например, в 9 клетках решетки Пеннета из 16 возможных сочетаний расположены комбинации, имеющие одинаковый фенотип — желтые гладкие семена. Генотипы, определяющие данный фенотип, таковы: 1ААВВ: 2ААВЬ: 2АаВВ: 4АаВЬ.
Число различных генотипов, образующихся при дигибридном скрещивании, равно 9. Число фенотипов в F2 при полном доминировании равно 4. Значит, дигибридное скрещивание есть два независимо идущих моногибридных скрещивания, результаты которых как бы накладываются друг на друга.
В отличие от первого закона, который справедлив всегда, второй закон относится только к случаям независимого наследования, когда изучаемые гены расположены в разных парах гомологичных хромосом.
Статистический характер законов Г. Менделя. Пусть в скрещивании Аа х Аа получено только четыре потомка. Можно ли точно предсказать генотип каждого из них? Неверно думать, что соотношение непременно будет равно 1АА: 2Аа: 1аа. Может случиться так, что все четыре потомка будут иметь генотип АА или Аа. Возможно и любое другое соотношение, например, три особи с генотипом Аа и одна — аа. Значит ли это, что закон расщепления в данном случае нарушается? Нет, закон расщепления не может быть поколеблен результатами скрещиваний, в которых обнаружено отклонение от ожидаемого соотношения, в нашем случае 1:2:1. Причина данного явления состоит в том, что законы генетики носят статистический характер. Это означает, например, что соотношение фенотипов потомков, ожидаемых в скрещивании гетерозигот 3:1, будет выполняться тем точнее, чем больше потомков. В опыте по скрещиванию сортов гороха с желтыми и зелеными семенами Г. Мендель в F2 получил очень большое количество семян и поэтому расщепление оказалось 3,01:1, т. е. близко к теоретически ожидаемому.
Точное выполнение соотношений 3:1, 9:3:3:1 и других возможно лишь при большом количестве изучаемых гибридных особей.
Когда Мендель ставил свои опыты, науке еще ничего не было известно ни о хромосомах и генах, ни о митозе и мейозе. Несмотря на это, Мендель, точно учтя и обдумав результаты расщепления, записал их с помощью той буквенной символики, которой мы пользуемся до сих пор. В этом проявилась мощь мышления Г. Менделя.