Алгебра 7-9 классы. 3. Степень с натуральным показателем. Свойства степени

 


 

СТЕПЕНЬ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ

 

ОПРЕДЕЛЕНИЕ СТЕПЕНИ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ

 

Произведение нескольких одинаковых множителей можно записать в виде степени. Например,

 Выражение 57 читают по-разному: «Пять в седьмой степени», «Седьмая степень числа пять», «Степень числа пять с показателем семь».



Определение. Степенью числа а с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен а. Степенью числа а с показателем 1 называется само число а.



Степень числа а с показателем n обозначают так: аn. Выражение аn называют степенью, число а — основанием степени, число n — показателем степени.

По определению степени:

Вообще,

Нахождение значения степени называют возведением в степень. Приведем примеры возведения в степень:

При возведении в степень отрицательного числа может получиться как положительное число, так и отрицательное. Например,

Степень отрицательного числа с четным показателем есть число положительное, так как произведение четного числа отрицательных множителей положительно. Степень отрицательного числа с нечетным показателем есть число отрицательное, так как произведение нечетного числа отрицательных множителей отрицательно.

Квадрат любого числа есть число положительное или нуль, т. е. при любом а.

Вычислим значения нескольких выражений, содержащих степени.

Пример 1. Найдем значение выражения  :

Значит,

 

Пример 2. Найдем значение выражения

Значит,

 

 
УМНОЖЕНИЕ И ДЕЛЕНИЕ СТЕПЕНЕЙ

 


Выражение а2а3 представляет собой произведение двух степеней с одинаковыми основаниями. Это произведение можно записать в виде степени с тем же основанием:

Значит,

Мы видим, что произведение а2а3 равно степени с тем же основанием и показателем, равным сумме показателей перемножаемых степеней.

Докажем, что для любого числа а и произвольных натуральных чисел m и n

Для этого, используя определение степени и свойства умножения, представим выражение аmаn сначала в виде произведения множителей, каждый из которых равен а, а затем в виде степени:

Таким образом,

Доказанное равенство выражает свойство произведения степеней. Его называют основным свойством степени. Оно распространяется на произведение трех и более степеней.

Например,

Отсюда следует правило умножения степеней: при умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели степеней складывают.

Приведем примеры:

Выражение а73 является частным двух степеней с одинаковыми основаниями. Это частное при можно представить в виде степени с тем же основанием. Действительно, так как , то по определению частного

Мы видим, что частное а73 равно степени с тем же основанием и показателем, равным разности показателей делимого и делителя.

Докажем, что для любого числа и произвольных натуральных чисел тип, таких, что ,

Покажем, что .

Действительно, по основному свойству степени

Значит, по определению частного



Итак, при делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

Приведем примеры:

Мы вывели правило деления ат на аm для случая, когда . Если это правило применить к частному an:an, то получится

Степень с нулевым показателем не была определена. Так как при всяком   и любом натуральном n

то считают, что при

 

Определение. Всякое число (кроме нуля) в нулевой степени равно единице.



Например, 2° — 1, (— 3,5)° =1. Выражение не имеет смысла.

Теперь, после введения нулевой степени, мы можем применять формулу и в том случае, когда m = 0 или n = 0 (при ). Точно так же формула справедлива и тогда, когда или .

 

 
 ВОЗВЕДЕНИЕ В СТЕПЕНЬ ПРОИЗВЕДЕНИЯ И СТЕПЕНИ

 


Выражение является степенью произведения множителей а и b. Это выражение можно представить в виде произведения степеней а и b:

Значит,

Мы видим, что четвертая степень произведения аb равна произведению четвертых степеней множителей а и b.

Докажем, что для любых а и b и произвольного натурального числа n

По определению степени

Сгруппировав отдельно множители а и множители b, получим :

Воспользовавшись определением степени, находим:

Следовательно,

Свойство степени произведения, выраженное равенством , распространяется на степень произведения трех и более множителей. Например,

Отсюда следует правило: (пpu возведении в степень произведения возводят в эту степень каждый множитель и результаты перемножают.

Выражение есть степень, основание которой само является степенью. Это выражение можно представить в виде степени с основанием а:

В результате возведения степени а5 в третью степень мы получили степень с тем же основанием и показателем, равным произведению показателей 5 и 3.

Докажем, что для любого числа а и произвольных натуральных чисел m и n

По определению степени

Согласно основному свойству степени

Заменим сумму  произведением mn.

Тогда получим:

Следовательно,

Из равенства следует правило: при возведении степени в степень основание оставляют тем же, а показатели перемножают.

Свойства степеней, выраженные формулами и , имеют место и для степеней с нулевым показателем (если основания отличны от нуля).

Материалы

-->

Яндекс.Метрика