Алгебра 7-9 классы. 5. Многочлены. Действия с многочленами

 


 

 

 

 


 МНОГОЧЛЕН И ЕГО СТАНДАРТНЫЙ ВИД



Выражение представляет собой сумму одночленов . Такие выражения называют многочленами.

Определение. Многочленом называется сумма одночленов.



Одночлены, из которых составлен многочлен, называют членами многочлена. Так, многочлен состоит из членов.

Если многочлен состоит из двух членов, его называют двучленом, если из трех членов — трехчленом. Одночлены считают многочленами, состоящими из одного члена.

В многочлене члены являются подобными слагаемыми, так как они имеют одну и ту же буквенную часть. Подобными слагаемыми являются и члены 2 и — 7, не имеющие буквенной части. Подобные слагаемые в многочлене называют подобными членами многочлена.

Сумму подобных членов можно заменить одним членом, сложив их коэффициенты и оставив ту же буквенную часть. Такое тождественное преобразование многочленов называют приведением подобных членов.

Выполнив приведение подобных членов в многочлене , получим:




Многочлен не содержит подобных членов, и каждый его член является одночленом стандартного вида. Такой многочлен называют многочленом стандартного вида.

Любой многочлен можно привести к стандартному виду. Для этого нужно каждый его член представить в стандартном виде и привести подобные члены.

Членами многочлена стандартного вида служат одночлены второй, пятой и нулевой степени. Наибольшую из этих степеней называют степенью многочлена. Таким образом, многочлен стандартного вида является многочленом пятой степени.

Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов. Степенью многочлена, не записанного в стандартном виде, называют степень тождественно равного ему многочлена стандартного вида.

Например, чтобы выяснить, какова степень многочлена , приведем его к стандартному виду:



Степень многочлена равна двум, поэтому и степень многочлена равна двум.

 

 

СЛОЖЕНИЕ И ВЫЧИТАНИЕ МНОГОЧЛЕНОВ

 


Составим сумму многочленов

Раскроем скобки и приведем подобные члены. Получим:

Сумму многочленов мы представили в виде многочлена . Вообще, сумму любых многочленов можно представить в виде многочлена.

Составим разность многочленов :

После раскрытия скобок и приведения подобных членов получим:



Разность многочленов мы представили в виде многочлена . Вообще, разность любых многочленов можно представить в виде многочлена.

Таким образом, при сложении и вычитании многочленов снова получается многочлен.

Иногда требуется несколько членов многочлена заключить в скобки. Тогда:

если перед скобками ставят знак «плюс», то члены, которые заключают в скобки, пишут с теми же знаками;

если перед скобками ставят знак «минус», то члены, заключаемые в скобки, пишут с противоположными знаками.

Например,




Полученные равенства являются тождествами. Убедиться в этом можно, раскрыв скобки в правой части каждого равенства.

 

УМНОЖЕНИЕ ОДНОЧЛЕНА НА МНОГОЧЛЕН



Составим произведение одночлена и многочлена



Преобразуем это произведение, используя распределительное свойство умножения:


Произведение одночлена и многочлена мы преобразовали в многочлен , умножив одночлен на каждый член многочлена и сложив полученные результаты.

Вообще, произведение одночлена и многочлена можно представить в виде многочлена.

При умножении одночлена на многочлен пользуются правилом:

Чтобы умножить одночлен на многочлен, нужно умножить этот одночлен на каждый член многочлена и полученные произведения сложить.

При умножении одночлена на многочлен запись можно вести короче. Например,

Умножение одночлена на многочлен применяется при решении уравнений. Приведем примеры.

Пример 1. Решим уравнение Преобразуем левую часть уравнения, воспользовавшись правилом умножения одночлена на многочлен. Получим уравнение

Отсюда

Пример 2. Решим уравнение

Умножив обе части уравнения на наименьшее общее кратное знаменателей дробей, т. е. на число 18, получим:

Отсюда

 

 

 ВЫНЕСЕНИЕ ОБЩЕГО МНОЖИТЕЛЯ ЗА СКОБКИ

 


Каждый член многочлена можно заменить произведением двух множителей, один из которых равен :

Полученное выражение на основе распределительного свойства можно представить в виде произведения двух множителей. Один из них — общий множитель , а второй — сумма :

Итак,

Представление многочлена в виде произведения двух или нескольких многочленов (среди которых могут быть и одночлены) называют разложением многочлена на множители. Такое преобразование используется при решении уравнений, в вычислениях и в других случаях.

Примененный нами способ разложения многочлена на множители называют вынесением общего множителя за скобки.

Пусть требуется разложить на множители многочлен . Члены этого многочлена имеют различные общие множители: и другие. Целесообразно вынести за скобки . Вынесем за скобки, например, :



Обычно при вынесении общего множителя за скобки каждую переменную, входящую во все члены многочлена.

выносят с наименьшим показателем» который она имеет в данном многочлене. Если все коэффициенты многочлена — целые числа, то в качестве коэффициента общего множителя берут наибольший по модулю общий делитель всех коэффициентов многочлена.

Покажем, как вынесение множителя за скобки применяется при решении уравнений.

Решим, например, уравнение

В выражении вынесем за скобки множитель . Получим:

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, т. е. когда

Решая уравнение , находим:

Следовательно, произведение обращается в нуль при и при т. е. уравнение

имеет два корня: 0 и —1,5.







Видеотека

-->

Яндекс.Метрика