Алгебра 7-9 классы. 14. Решение типовых заданий по теме: "Дробные рациональные выражения"

 

Сумма и разность дробей

 

 

 Сложение и вычитание дробей с одинаковыми знаменателями

 


При сложении обыкновенных дробей с одинаковыми знаменателями складывают их числители, а знаменатель оставляют прежним. Например:



Таким же образом складывают любые рациональные дроби с одинаковыми знаменателями:

где а, b и с — многочлены, причем с — ненулевой многочлен.

Это равенство выражает правило сложения рациональных дробей с одинаковыми знаменателями:

 

чтобы сложить рациональные дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тем же

 

Вычитание рациональных дробей выполняется аналогично сложению:

 

Чтобы выполнить вычитание рациональных дробей с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тем же.

 

Пример 1. Сложим дроби

 

 

Пример 2. Вычтем дроби

 

 

Пример 3. Упростим выражение

Здесь удобно сложение и вычитание дробей выполнять не последовательно, а совместно:

 

 

 

Сложение и вычитание дробей с разными знаменателями


Сложение и вычитание рациональных дробей с разными знаменателями сводится к сложению и вычитанию рациональных дробей с одинаковыми знаменателями. Для этого данные дроби приводят к общему знаменателю.

Пример 1. Сложим дроби

Знаменатели дробей представляют собой одночлены. Наиболее простым общим знаменателем является одночлен . Коэффициент этого одночлена равен наименьшему общему кратному коэффициентов знаменателей дробей, а каждая переменная взята с наибольшим показателем, с которым она входит в знаменатели дробей. Дополнительные множители к числителям и знаменателям этих дробей соответственно равны .

Имеем

Пример 2. Преобразуем разность

Чтобы найти общий знаменатель, разложим знаменатель каждой дроби на множители:

Простейшим общим знаменателем служит выражение Дополнительные множители к числителям и знаменателям этих дробей соответственно равны b и а.

Имеем

Преобразование рационального выражения, которое является суммой или разностью целого выражения и дроби, сводится к преобразованию суммы или разности дробей.

Пример 3. Упростим выражение

Представим выражение а - 1 в виде дроби со знаменателем 1 и выполним вычитание дробей:

 

 

 

 

 

Произведение и частное дробей

 

 

 Умножение дробей. Возведение дроби в степень



При умножении обыкновенных дробей перемножают отдельно их числители и их знаменатели и первое произведение записывают в числителе, а второе — в знаменателе дроби. Например:

Таким же образом перемножают любые рациональные дроби:

где а, b, с и d — некоторые многочлены, причем b и d — ненулевые многочлены. Это равенство выражает правило умножения рациональных дробей:

 

чтобы умножить дробь на дробь, нужно перемножить их числители и перемножить их знаменатели и первое произведение записать числителем, а второе — знаменателем дроби.

Пример 1. Умножим дробь на дробь

Воспользуемся правилом умножения дробей:

 

Пример 2. Умножим дробь на дробь

Имеем

 

Пример 3. Представим произведение в виде рациональной дроби.

Имеем

 

Пример 4. Умножим дробь на многочлен

При умножении дроби на многочлен этот многочлен записывают в виде дроби и затем применяют правило умножения дробей:

Правило умножения дробей распространяется на произведение трех и более рациональных дробей. Например:

Выясним теперь, как выполняется возведение рациональной дроби в степень.

Рассмотрим выражение , являющейся  n-й степенью  рациональной дроби и докажем, что

По определению степени имеем

Применяя правило умножения рациональных дробей и определение степени, получим

Следовательно , 

Из доказанного тождества следует правило возведения рациональной дроби в степень:


чтобы возвести дробь в степень, надо возвести в эту степень числитель и знаменатель и первый результат записать в числителе, а второй — в знаменателе дроби.

Пример 5. Возведем дробь в третью степень.

Воспользуемся правилом возведения в степень:

 

 

Деление дробей

 

При делении обыкновенных дробей первую дробь умножают на дробь, обратную второй. Например:

Так же поступают при делении любых рациональных дробей:

где а, b, с и d — некоторые многочлены, причем b, c и d — ненулевые многочлены.

Это равенство выражает правило деления рациональных :

 

чтобы разделить одну дробь на другую, нужно первую дробь умножить на дробь, обратную второй.

 

Пример 1. Разделим дробь на дробь .

Воспользуемся правилом деления дробей:

 

Пример 2. Разделим дробь на дробь

Имеем

 

Пример 3. Разделим дробь на многочлен a + 3.

При делении дроби на многочлен этот многочлен записывают в виде дроби и затем применяют правило деления дробей:

 

 

 

Преобразование рациональных выражений

 

 

 

 Рациональное выражение представляет собой частное от деления суммы рациональных дробей многочлен. Деление на  можно заменить умножением на дробь Поэтому преобразование данного выражения сводится к сложению дробей и умножению результата на дробь  Вообще преобразование любого рационального выражения можно свести к сложению, вычитанию, умножению или делению рациональных дробей.

Из правил действий с дробями следует, что сумму, разнос произведение и частное рациональных дробей всегда можно предс вить в виде рациональной дроби. Значит, и всякое рациональное выражение можно представить в виде рациональной дроби.

Пример 1. Преобразуем в рациональную дробь выражение





Сначала выполним умножение дробей, затем полученный результат вычтем из многочлена x + 1:

 

 

Запись можно вести иначе:

 

 

 

Пример 2. Представим выражение

в виде рациональной дроби.

Сначала сложим дроби, заключенные в скобки, затем найденный результат умножим на дробь и, наконец, к полученному произведению прибавим 1:

 







Видеотека

-->

Яндекс.Метрика