Алгебра 7-9 классы. 20. Решение квадратных уравнений


 

ФОРМУЛЫ КОРНЕЙ КВАДРАТНЫХ УРАВНЕНИЙ



Пусть дано квадратное уравнение Применим к квадратному трехчлену те же преобразования, которые мы выполняли ранее, когда доказывали теорему о том, что графиком функции с является парабола.



Имеем

 



Обычно выражение обозначают буквой D и называют дискриминантом квадратного уравнения (или дискриминантом квадратного трехчлена ).

Таким образом,

Значит, квадратное уравнение можно переписать в виде

и далее

Любое квадратное уравнение можно преобразовать к виду (1), удобному, как мы сейчас убедимся, для того, чтобы определять число корней квадратного уравнения и находить эти корни.

 

Теорема 1

Если D <0, то квадратное уравнение не имеет корней.

Доказательство. Если D < 0, то правая часть уравнения (1) — отрицательное число; в то же время левая часть уравнения (1) при любых значениях х принимает неотрицательные значения. Значит, нет ни одного значения х, которое удовлетворяло бы уравнению (1), а потому уравнение (1) не имеет корней.

Пример 1. Решить уравнение

Решение. Здесь а = 2, b = 4, с = 7,



Так как D < 0, то по теореме 1 данное квадратное уравнение не имеет корней.

 

Теорема 2

Если D = О, то квадратное уравнение имеет один корень, который находится по формуле

 

Доказательство. Если D = 0, то уравнение (1) принимает вид Значит,   единственный корень уравнения.

 Замечание 1. Помните ли вы, что абсцисса вершины параболы, которая служит графиком функции ? Почему именно это значение оказалось единственным корнем квадратного уравнения ? «Ларчик» открывается просто: если D = 0, то, как мы установили ранее,

Графиком же функции является парабола с вершиной в точке (см., например, рис. 98). Значит, абсцисса вершины параболы и единственный корень квадратного уравнения при D = 0 — одно и то же число.

 

Пример 2. Решить уравнение 2 - 20х + 25 = 0.

Решение. Здесь а = 4, b = -20, с = 25, D = b2 - 4ас  = (-20)2 - 4 • 4 • 25 = 400 - 400  = 0.

Так как D = 0, то по теореме 2 данное квадратное уравнение имеет один корень. Этот корень находится по формуле

 Значит, .

Ответ: 2,5.

 

Замечание 2. Обратите внимание, что2 - 20х +25 — полный квадрат: 2 - 20х + 25 = (2х - 5)2. Если бы мы это заметили сразу, то решили бы уравнение так: (2х - 5)2 = 0, значит, 2х - 5 = 0, откуда получаем х = 2,5. Вообще, если D = 0, то ах2 + bх + с =
— это мы отметили ранее в замечании 1.

 

Теорема 3. Если D > О, то квадратное уравнение ах2 + bх  + с = О имеет два корня, которые находятся по формулам

 

 Доказательство. Перепишем квадратное уравнение в виде (1)

Положим   тогда уравнение (1) примет вид

По условию, D > О, значит, правая часть уравнения положительное число. Тогда из уравнения (2) получаем, что

Ho , таким образом, задача свелась к решению двух уравнений:

Из первого уравнения находим

Из второго уравнения находим

Итак, заданное квадратное уравнение имеет два корня:

Замечание 3. в математике довольно редко бывает так, чтобы введенный термин не имел, образно выражаясь, житейской подоплеки. Возьмем новое понятие — дискриминант. Вспомните слово «дискриминация». Что оно означает? Оно означает унижение одних и возвышение других, т.е. различное отношение к различным людям. Оба слова (и дискриминант, и дискриминация) происходят от латинского discriminans — «различающий». Дискриминант различает квадратные уравнения по числу корней.

 

Пример 3. Решить уравнение Зх2 + 8x — 11 = 0. Решение. Здесь а = 3, b = 8, с =  —11,

D = b2 — 4ас = 82 - 4 • 3 • (—11) = 64 4- 132 = 196.

Так как D > 0, то по теореме 3 данное квадратное уравнение имеет два корня. Эти корни находятся по формулам (3)

Ответ: 1,

Фактически мы с вами выработали следующее правило:

 







Видеотека

-->

Яндекс.Метрика