Свет и тень

СВЕТ И ТЕНЬ

 

 

 

 

 



 

Очень часто мы замечаем, что если на пути лучей света оказывается какой-то непрозрачный предмет, то за ним образуется тень (рис. 1, а). Это одно из многочисленных наблюдений, показывающих, что в однородной среде свет распространяется прямолинейно.



Поэтому при всевозможных геометрических, геодезических, астрономических и физических измерениях и построениях луч света в однородной среде принимают за прямую линию.


Если источник света не точечный, а протяженный, то наряду с полной тенью образуется полутень (рис. 1, б). Происхождение ее понятно из рисунка.

Однако даже в случае точечного источника света при внимательном рассмотрении границы тени можно заметить, что она несколько размыта: вблизи нее видны светлые и темные полосы. Это явление объясняется дифракцией света, о чем подробнее будет рассказано ниже.

Рис. 1. Тень (а) и полутень (б)

 

 

 

ИЗОБРАЖЕНИЕ СОЛНЦА

 

В тени деревьев видны беспорядочно расположенные на земле светлые пятна различной величины, но одинаковой эллиптической формы. Их образуют солнечные лучи, проникающие через просветы в листьях деревьев (рис. 2). Эти светлые пятна и есть изображение Солнца.

Как же объяснить эллиптическую форму изображения Солнца?

Рис. 2. В тени деревьев видны изображения солнца в виде эллипсов.

Направим луч света на лист бумаги, располагая его перпендикулярно к падающему лучу; мы увидим круглое пятно. Поднимем лист выше — пятно становится меньше. Отсюда следует, что пучок лучей, образующих такое пятно, имеет форму конуса. Наклоним лист бумаги — пятно принимает форму эллипса.

Но почему же на земле получается изображение Солнца, а не отверстия?

Рассмотрим рисунок 3. На нем показаны ширма с маленьким отверстием CZ), предмет АВ и его изображение А1В1 на экране. Мы видим, что лучи, выходящие из какой-либо точки предмета (например, А) и проходящие через отверстие С, дают на экране изображение этой точки в виде пятна (А1), размеры которого тем меньше, чем меньше отверстие и чем дальше точка (А) от него. Такие пятна получаются от всех точек предмета. Они дают изображение предмета АВ, которое тем менее размыто по краям, чем меньше отверстие и дальше предмет. Форма изображения при этом очень мало зависит от формы отверстия С. Если же источник света находится близко от отверстия, на экране получается светлое очертание отверстия, тем более отчетливое, чем меньше размеры источника света.

Рис. 3. Получение уменьшенного изображения предмета.

В темной комнате или в темном ящике (камера обскура), в одной из стенок которых (в ставне окна) проделано малое отверстие, можно отчетливо видеть не только Солнце, но и освещенные Солнцем ландшафты с движущимися в них предметами (рис. 4). Для получения четких изображений необходимо только подобрать величину отверстия.

Получение изображений в темной камере, видимо, было известно уже давно. Польский писатель Б. Прус в своем произведении «Фараон», написанном на основании изучения большого количества древнеегипетских документов, рассказывает о том, как жрецы в темной палатке показывали фараону картину битвы, происходящей на освещенном солнцем плато. Повелитель египтян и не подозревал, что все виденное им не божественное знамение, а очень простое физическое явление.


Рис. 4. Получение уменьшенного изображения освещенного предмета в темной камере.

 

 

ТЕНЬ


Наряду со светлыми пятнами в тени полезно пронаблюдать форму тени от различных предметов в лучах Солнца, Луны и других источников света.

Обратите внимание на вашу собственную тень на земле. Тень ног резко очерчена, тень головы расплывчата.

Поместите руку близко перед листом бумаги, вы увидите отчетливую тень. Отодвиньте руку от бумаги. Полная тень каждого пальца становится все уже, в то время как полутени увеличиваются, пока не сольются друг с другом. Все это происходит потому, что Солнце и другие источники света не являются точечными источниками.

Посмотрите на тень бабочки. Она круглая. Это теневое изображение Солнца. Объясняет это явление рисунок 3.

Возьмите лист бумаги и поместите его горизонтально так, чтобы на нем образовалась тень от вертикальной проволочной сетки (например, от проволочного забора). Удаляйте бумагу от сетки. На некотором расстоянии вы увидите, что тени горизонтальных проволок исчезли, в то время как вертикальные тени остались.

Как же объяснить это явление?

Рис. 5. Тени от проволоки в наклонно падающих лучах Солнца: а) четкая; б) нечеткая тень.

Представим себе проволоку разделенной на большое количество участков. Каждый участок в лучах, падающих наклонно, дает на экране тень в виде эллипса. Вертикальная проволока дает эллипсы, расположенные так, как показано на рисунке 5, а. Они перекрывают друг друга и дают сплошную линию. Эллипсы же, образованные участками горизонтальной проволочки, располагаются так, как показано на рисунке 5, б, они расплываются.

Поздней осенью, когда деревья уже сбросили свою листву, можно часто видеть тени от двух параллельных ветвей наложенными одна на другую. Ветвь, расположенная ближе к нам, дает четкую тень, дальняя — более широкую, расплывчатую (полутень). Удивляет здесь то, что при наложении этих теней посредине более темной из них мы видим светлую полосу, так что тень выглядит двойной. Причиной является наложение полутеней. Для объяснения этого явления начертим сечения двух ветвей (рис. 6): одной—диаметром 1 см, другой—0,5 см, расположив их центры на расстоянии 3 см друг от друга. На расстоянии 5 см от центра сечения толстой ветви расположим изображение протяженного источника света шириной 2 см и проведем от краев источника света прямые (лучи). На экране, отстоящем от центра тонкой ветви на расстоянии 10 см, обнаружим области полной тени (ВС, В'С'), полутени (АВ, А'В') и отсутствия ее (СС').

Рис. 6. Возникновение двойных теней.







Видеотека

-->

Яндекс.Метрика